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1 Basic concepts of linear codes

In 1948 Claude Shannon published a landmark paper “A mathematical theory of commu-
nication” [306] that signified the beginning of both information theory and coding theory.
Given a communication channel which may corrupt information sent over it, Shannon
identified a number called the capacity of the channel and proved that arbitrarily reliable
communication is possible at any rate below the channel capacity. For example, when trans-
mitting images of planets from deep space, it is impractical to retransmit the images. Hence
if portions of the data giving the images are altered, due to noise arising in the transmission,
the data may prove useless. Shannon’s results guarantee that the data can be encoded before
transmission so that the altered data can be decoded to thespecified degree of accuracy.
Examples of other communication channels include magnetic storage devices, compact
discs, and any kind of electronic communication device such as cellular telephones.
The common feature of communication channels is that information is emanating from a

source and is sent over the channel to a receiver at the other end. For instance in deep space
communication, the message source is the satellite, the channel is outer space together with
the hardware that sends and receives the data, and the receiver is the ground station onEarth.
(Of course, messages travel from Earth to the satellite as well.) For the compact disc, the
message is the voice, music, or data to be placed on the disc, the channel is the disc itself,
and the receiver is the listener. The channel is “noisy” in the sense that what is received
is not always the same as what was sent. Thus if binary data is being transmitted over the
channel, when a 0 is sent, it is hopefully received as a 0 but sometimes will be received as a
1 (or as unrecognizable). Noise in deep space communications can be caused, for example,
by thermal disturbance. Noise in a compact disc can be caused by fingerprints or scratches
on the disc. The fundamental problem in coding theory is to determine what message was
sent on the basis of what is received.
A communication channel is illustrated in Figure 1.1. At the source, a message, denoted

x in the figure, is to be sent. If no modification is made to the message and it is transmitted
directly over the channel, any noise would distort the message so that it is not recoverable.
The basic idea is to embellish themessage by adding some redundancy to it so that hopefully
the received message is the original message that was sent. The redundancy is added by the
encoder and the embellished message, called a codewordc in the figure, is sent over the
channel where noise in the form of an error vectore distorts the codeword producing a
received vectory.1 The received vector isthen sent to be decoded where the errors are

1 Generally our codeword symbols will come from a fieldFq, with q elements, and our messages and codewords
will be vectors in vector spacesFk

q andF
n
q, respectively; ifc entered the channel andy exited the channel, the

differencey − c is what we have termed the errore in Figure 1.1.
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� � � �Message
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Figure 1.1 Communication channel.

removed, the redundancy is then stripped off, and an estimatex̂ of the original message
is produced. Hopefullŷx = x. (There is a one-to-one correspondence between codewords
and messages. Thus we will often take the point of view that the job of the decoder is to
obtain an estimatêy of y and hope that̂y = c.) Shannon’s Theorem guarantees that our
hopes will be fulfilled a certain percentage of the time.With the right encoding based on the
characteristics of the channel, this percentage can be made as high as we desire, although
not 100%.
The proof of Shannon’s Theorem is probabilistic and nonconstructive. In other words, no

specific codes were produced in the proof that give the desired accuracy for a given channel.
Shannon’s Theoremonly guarantees their existence. The goal of research in coding theory is
to produce codes that fulfill the conditions of Shannon’s Theorem. In the pages that follow,
we will present many codes that have been developed since the publication of Shannon’s
work.Wewill describe the properties of these codes and on occasion connect these codes to
other branches of mathematics. Once the code is chosen for application, encoding is usually
rather straightforward. On the other hand, decoding efficiently can be amuchmore difficult
task; at various points in this book we will examine techniques for decoding the codes we
construct.

1.1 Three fields

Among all types of codes, linear codes are studied the most. Because of their algebraic
structure, they are easier to describe, encode, and decode than nonlinear codes. The code
alphabet for linear codes is a finite field, although sometimes other algebraic structures
(such as the integers modulo 4) can be used to define codes that are also called “linear.”
In this chapter we will study linear codes whose alphabet is a fieldFq, also denoted

GF(q), with q elements. In Chapter 3, we will give the structure and properties of finite
fields. Although we will present our general results over arbitrary fields, we will often
specialize to fields with two, three, or four elements.
A field is an algebraic structure consisting of a set together with two operations, usu-

ally called addition (denoted by+) and multiplication (denoted by· but often omitted),
which satisfy certain axioms. Three of the fields that are very common in the study
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of linear codes are thebinary field with two elements, theternary field with three el-
ements, and thequaternaryfield with four elements. One can work with these fields
by knowing their addition and multiplication tables, which we present in the next three
examples.

Example 1.1.1The binary fieldF2 with two elements{0,1} has the following addition and
multiplication tables:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

This is also the ring of integers modulo 2. �

Example 1.1.2The ternary fieldF3 with three elements{0,1,2} has addition and multi-
plication tables given by addition and multiplication modulo 3:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1 �

Example 1.1.3The quaternary fieldF4 with four elements{0,1, ω, ω} is more compli-
cated. It has the following addition and multiplication tables;F4 is not the ring of integers
modulo 4:

+ 0 1 ω ω

0 0 1 ω ω

1 1 0 ω ω

ω ω ω 0 1
ω ω ω 1 0

· 0 1 ω ω

0 0 0 0 0
1 0 1 ω ω

ω 0 ω ω 1
ω 0 ω 1 ω

Some fundamental equations are observed in these tables. For instance, one notices that
x + x = 0 for all x ∈ F4. Alsoω = ω2 = 1+ ω andω3 = ω3 = 1. �

1.2 Linear codes, generator and parity check matrices

Let F
n
q denote the vector space of alln-tuples over the finite fieldFq. An (n, M) codeC

overFq is a subset ofF
n
q of sizeM . We usually write the vectors (a1, a2, . . . , an) in F

n
q in the

form a1a2 · · · an and call the vectors inC codewords. Codewords are sometimes specified
in other ways. The classic example is the polynomial representation used for codewords in
cyclic codes; this will be described in Chapter 4. The fieldF2 of Example 1.1.1 has had
a very special place in the history of coding theory, and codes overF2 are calledbinary
codes. Similarly codes overF3 are termedternary codes, while codes overF4 are called
quaternary codes. The term “quaternary” has also been used to refer to codes over the ring
Z4 of integers modulo 4; see Chapter 12.
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Without imposing further structure ona code its usefulness is somewhat limited. Themost
useful additional structure to impose is that of linearity. To that end, ifC is ak-dimensional
subspace ofFn

q, thenC will be called an [n, k] linear codeover Fq. The linear codeC
hasqk codewords. The two most common ways to present a linear code are with either a
generator matrix or a parity check matrix. Agenerator matrixfor an [n, k] codeC is any
k × nmatrixG whose rows form a basis forC. In general there aremany generator matrices
for a code. For any set ofk independent columns of a generator matrixG, the corresponding
set of coordinates forms aninformation setfor C. The remainingr = n − k coordinates are
termed aredundancy setandr is called theredundancyof C. If the firstk coordinates form
an information set, the code has a unique generator matrix of the form [Ik | A] where Ik is
thek × k identitymatrix. Such a generatormatrix is instandard form. Because a linear code
is a subspace of a vector space, it is the kernel of some linear transformation. In particular,
there is an (n − k)× n matrixH , called aparity check matrixfor the [n, k] codeC, defined
by

C = {
x ∈ F

n
q

∣∣ HxT = 0
}
. (1.1)

Note that the rows ofH will also be independent. In general, there are also several possible
parity check matrices forC. The next theorem gives one of them whenC has a generator
matrix in standard form. In this theoremAT is the transpose ofA.

Theorem 1.2.1 If G = [ Ik | A] is a generator matrix for the[n, k] codeC in standard form,
then H = [−AT | In−k] is a parity check matrix forC.

Proof: We clearly haveH GT = −AT + AT = O. ThusC is contained in the kernel of the
linear transformationx 
→ HxT. As H has rankn − k, this linear transformation has kernel
of dimensionk, which is also the dimension ofC. The result follows. �

Exercise 1 Prior to the statement of Theorem 1.2.1, it was noted that the rows of the
(n − k)× n parity check matrixH satisfying (1.1) are independent. Why is that so? Hint:
The mapx 
→ HxT is a linear transformation fromFn

q to F
n−k
q with kernelC. From linear

algebra, what is the rank ofH? �

Example 1.2.2Thesimplestway toencode information inorder to recover it in thepresence
of noise is to repeat each message symbol a fixed number of times. Suppose that our
information is binary with symbols from the fieldF2, and we repeat each symboln times. If
for instancen = 7, then whenever we want to send a 0 wesend 0000000, and whenever we
want to send a 1 we send 1111111. If at most three errors are made in transmission and if
we decode by “majority vote,” then we can correctly determine the information symbol, 0
or 1. In general, our codeC is the [n,1] binary linear code consisting of the two codewords
0= 00· · ·0 and1= 11· · ·1 and is called thebinary repetition codeof lengthn. This code
can correct up toe = �(n − 1)/2
 errors: if at mosteerrors are made in a received vector,
then the majority of coordinates will be correct, and hence the original sent codeword can
be recovered. If more thane errors are made, these errors cannot be corrected. However,
this code can detectn − 1 errors, as received vectors with between 1 andn − 1 errors will
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definitely not be codewords. A generator matrix for the repetition code is

G = [1 | 1 · · · 1],

which is of course in standard form. The corresponding parity check matrix from
Theorem 1.2.1 is

H =



1
1
...
1

In−1


 .

The first coordinate is an information set and the lastn − 1 coordinates form a redundancy
set. �

Exercise 2 How many information sets are there for the [n,1] repetition code of
Example 1.2.2? �

Example 1.2.3The matrixG = [ I4 | A], where

G =



1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1




is a generator matrix in standard form for a [7,4] binary code that we denote byH3. By
Theorem 1.2.1 a parity check matrix forH3 is

H = [AT | I3] =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


 .

This code is called the [7,4] Hamming code. �

Exercise 3 Find at least four information sets in the [7,4] codeH3 from Example 1.2.3.
Find at least one set of four coordinates that do not form an information set. �

Often in this text we will refer to asubcodeof a codeC. If C is not linear (or not known
to be linear), a subcode ofC is any subset ofC. If C is linear, a subcode will be a subset of
C which must also be linear; in this case a subcode ofC is a subspace ofC.

1.3 Dual codes

The generator matrixG of an [n, k] codeC is simply a matrix whose rows are independent
and span the code. The rows of the parity check matrixH are independent; henceH is the
generator matrix of some code, called thedualor orthogonalof C and denotedC⊥. Notice
thatC⊥ is an [n, n − k] code. An alternate way to define the dual code is by using inner
products.



6 Basic concepts of linear codes

Recall that the ordinary inner product of vectorsx = x1 · · · xn, y = y1 · · · yn in F
n
q is

x · y =
n∑

i =1

xi yi .

Therefore from (1.1), we see thatC⊥ can also be defined by

C⊥ = {
x ∈ F

n
q

∣∣ x · c= 0 for all c ∈ C}
. (1.2)

It is a simple exercise to show that ifG andH are generator and parity check matrices, re-
spectively, forC, thenH andG are generator and parity checkmatrices, respectively, forC⊥.

Exercise 4 Prove that ifG andH are generator and parity check matrices, respectively,
for C, thenH andG are generator and parity check matrices, respectively, forC⊥. �

Example 1.3.1Generator and parity check matrices for the [n,1] repetition codeC are
given in Example1.2.2. The dual codeC⊥ is the [n, n − 1] code with generator matrix
H and thus consists of all binaryn-tuplesa1a2 · · · an−1b, whereb = a1 + a2 + · · · + an−1

(addition inF2). Thenth coordinateb is anoverall parity check for the firstn − 1 coordinates
chosen, therefore, so that the sum of all the coordinates equals 0. This makes it easy to see
thatG is indeeda parity check matrix forC⊥. The codeC⊥ has the property that a single
transmission error can be detected (since the sum of the coordinates will not be 0) but not
corrected (since changing any one of the received coordinates will give a vector whose sum
of coordinates will be 0). �

A codeC isself-orthogonalprovidedC ⊆ C⊥ andself-dualprovidedC = C⊥. The length
n of a self-dual code is even and the dimension isn/2.

Exercise 5 Prove that a self-dual code has even lengthn and dimensionn/2. �

Example 1.3.2One generator matrix for the [7,4] Hamming codeH3 is presented in
Example 1.2.3. Let̂H3 be the code of length 8 and dimension 4 obtained fromH3 by
adding an overall parity check coordinate to each vector ofG and thus to each codeword
ofH3. Then

Ĝ =



1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0




is a generator matrix for̂H3. It is easy to verify that̂H3 is a self-dual code. �

Example 1.3.3The [4,2] ternarycodeH3,2, oftencalled thetetracode, hasgeneratormatrix
G, in standard form, given by

G =
[
1 0 1 1
0 1 1 −1

]
.

This code is also self-dual. �
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Exercise 6 Prove that̂H3 from Example 1.3.2 andH3,2 from Example 1.3.3 are self-dual
codes. �

Exercise 7 Find all the information sets of the tetracode given in Example 1.3.3. �

When studying quaternary codes over the fieldF4 (Example 1.1.3), it is often useful to
consider another inner product, called theHermitian inner product, given by

〈x, y〉 = x · y =
n∑

i =1

xi yi ,

where , calledconjugation, is given by0= 0,1= 1, andω = ω. Using this inner product,
we can define theHermitian dualof a quaternarycodeC to be, analogousto (1.2),

C⊥H = {
x ∈ F

n
q

∣∣ 〈x, c〉 = 0 for all c ∈ C}
.

Define theconjugateof C to be

C = {c | c ∈ C},
wherec= c1 c2 · · · cn whenc= c1c2 · · · cn. Notice thatC⊥H = C⊥

. We also haveHermitian
self-orthogonality and Hermitian self-duality: namely,C is Hermitian self-orthogonalif
C ⊆ C⊥H andHermitian self-dualif C = C⊥H .

Exercise 8 Prove that ifC is a code overF4, thenC⊥H = C⊥
. �

Example 1.3.4The [6,3] quaternary codeG6 has generator matrixG6 in standard form
given by

G6 =

1 0 0 1 ω ω

0 1 0 ω 1 ω

0 0 1 ω ω 1


 .

This code is often called thehexacode. It is Hermitian self-dual. �

Exercise 9 Verify the following properties of the Hermitian inner product onF
n
4:

(a) 〈x, x〉 ∈ {0,1} for all x ∈ F
n
4.

(b) 〈x, y+ z〉 = 〈x, y〉 + 〈x, z〉 for all x, y, z ∈ F
n
4.

(c) 〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉 for all x, y, z ∈ F
n
4.

(d) 〈x, y〉 = 〈y, x〉 for all x, y ∈ F
n
4.

(e) 〈αx, y〉 = α〈x, y〉 for all x, y ∈ F
n
4.

(f) 〈x, αy〉 = α〈x, y〉 for all x, y ∈ F
n
4. �

Exercise 10 Prove that the hexacodeG6 from Example 1.3.4 is Hermitian self-dual. �

1.4 Weights and distances

An important invariant of a code is the minimum distance between codewords. The
(Hamming) distanced(x, y) between two vectorsx, y ∈ F

n
q is defined to be the number
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of coordinates in whichx andy differ. The proofs of the following properties of distance
are left as an exercise.

Theorem 1.4.1The distance functiond(x, y) satisfies the following four properties:
(i) (non-negativity) d(x, y) ≥ 0 for all x, y ∈ F

n
q.

(ii) d(x, y) = 0 if and only ifx = y.
(iii) ( symmetry) d(x, y) = d(y, x) for all x, y ∈ F

n
q.

(iv) (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ F
n
q.

This theorem makes the distance function a metric on the vector spaceF
n
q.

Exercise 11 Prove Theorem 1.4.1. �

The (minimum) distanceof a codeC is the smallest distance between distinct codewords
and is important indetermining theerror-correctingcapability ofC; aswesee later, thehigher
the minimum distance, the more errors the code can correct. The (Hamming) weightwt(x)
of a vectorx ∈ F

n
q is the number of nonzero coordinates inx. The proof of the following

relationship between distance and weight is also left as an exercise.

Theorem 1.4.2 If x, y ∈ F
n
q, thend(x, y) = wt(x− y). If C is a linear code, the minimum

distance d is the same as the minimum weight of the nonzero codewords ofC.

Asa result of this theorem, for linear codes, theminimumdistance is also called theminimum
weightof the code. If the minimum weightd of an [n, k] code is known, then we refer to
the code as an [n, k, d] code.

Exercise 12 Prove Theorem 1.4.2. �

When dealing with codes overF2, F3, or F4, there are some elementary results about
codeword weights that prove to be useful. We collect them here and leave the proof to the
reader.

Theorem 1.4.3The followinghold:
(i) If x, y ∈ F

n
2, then

wt(x+ y) = wt(x)+ wt(y)− 2wt(x ∩ y),

wherex ∩ y is the vector inFn
2, which has1s precisely in those positions where both

x andy have1s.
(ii) If x, y ∈ F

n
2, thenwt(x ∩ y) ≡ x · y (mod 2).

(iii) If x ∈ F
n
2, thenwt(x) ≡ x · x (mod 2).

(iv) If x ∈ F
n
3, thenwt(x) ≡ x · x (mod 3).

(v) If x ∈ F
n
4, thenwt(x) ≡ 〈x,x〉 (mod 2).

Exercise 13 Prove Theorem 1.4.3. �

Let Ai , also denotedAi (C), be the number of codewords of weighti in C. The listAi for
0≤ i ≤ n is called theweight distributionorweight spectrumof C. A great deal of research
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is devoted to the computation of the weight distribution of specific codes or families of
codes.

Example 1.4.4Let C be the binary code with generator matrix

G =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


 .

Theweight distributionofC isA0 = A6 = 1andA2 = A4 = 3. Notice that only thenonzero
Ai are usually listed. �

Exercise 14 Find the weight distribution of the ternary code with generator matrix

G =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


 .

Compare your result to Example 1.4.4. �

Certain elementary facts about the weight distribution are gathered in the following
theorem. Deeper results on the weight distribution of codes will be presented in Chapter 7.

Theorem 1.4.5LetC be an[n, k, d] code overFq. Then:
(i) A0(C)+ A1(C) + · · · + An(C) = qk.
(ii) A0(C) = 1 and A1(C) = A2(C) = · · · = Ad−1(C) = 0.
(iii) If C is a binary code containing the codeword1= 11· · ·1, then Ai (C) = An−i (C) for

0≤ i ≤ n.
(iv) If C is a binary self-orthogonal code, then each codeword has even weight, andC⊥

contains the codeword1= 11· · ·1.
(v) If C is a ternary self-orthogonal code, then the weight of each codeword is divisible by

three.
(vi) If C is a quaternary Hermitian self-orthogonal code, then the weight of each codeword

is even.

Exercise 15 Prove Theorem 1.4.5. �

Theorem 1.4.5(iv) states that all codewords in a binary self-orthogonal codeC have even
weight. If we look at the subset of codewords ofC that have weights divisible by four, we
surprisingly get a subcode ofC; that is, the subset of codewordsof weights divisible by four
form a subspace ofC. This is not necessarily the case for non-self-orthogonal codes.
Theorem 1.4.6Let C be an[n, k] self-orthogonal binary code. LetC0 be the set of code-
words inC whose weights are divisible by four. Then either:
(i) C = C0, or
(ii) C0 is an[n, k − 1] subcode ofC andC = C0 ∪ C1,whereC1 = x + C0 for any codeword

x whose weight is even but not divisible by four. FurthermoreC1 consists of all
codewords ofC whose weights are not divisible by four.
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Proof: By Theorem 1.4.5(iv) all codewords have even weight. Therefore either (i) holds
or there exists a codewordx of even weight but not of weight a multiple of four. Assume
the latter. Lety be another codeword whose weight is even but not a multiple of four.
Then by Theorem 1.4.3(i), wt(x+ y) = wt(x) + wt(y)− 2wt(x ∩ y) ≡ 2+ 2− 2wt(x ∩ y)
(mod 4). But by Theorem1.4.3(ii), wt(x ∩ y) ≡ x · y (mod 2). Hencewt(x+ y) is divisible
by four. Thereforex + y ∈ C0. This shows thaty ∈ x+ C0 andC = C0 ∪ (x+ C0). ThatC0
is a subcode ofC and thatC1 = x+ C0 consists of all codewords ofC whose weights are
not divisible by four follow from a similar argument. �

There is ananalogous result toTheorem1.4.6where youconsider the subset of codewords
of a binary code whose weights are even. In this case the self-orthogonality requirement is
unnecessary; we leave its proof to the exercises.

Theorem 1.4.7LetC be an[n, k] binary code. LetCe be the set of codewords inC whose
weights are even. Then either:
(i) C = Ce, or
(ii) Ce is an[n, k − 1] subcode ofC andC = Ce ∪ Co,whereCo = x+ Ce for any codeword

x whose weight is odd. FurthermoreCo consists of all codewords ofC whose weights
are odd.

Exercise 16 Prove Theorem 1.4.7. �

Exercise 17 Let C be the [6,3] binary code with generator matrix

G =

1 1 0 0 0 0
0 1 1 0 0 0
1 1 1 1 1 1


 .

(a) Prove thatC is not self-orthogonal.
(b) Find the weight distribution ofC.
(c) Show that the codewords whose weights are divisible by four do not form a subcode

of C. �

The next result gives a way to tell when Theorem 1.4.6(i) is satisfied.

Theorem 1.4.8LetC be a binary linear code.
(i) If C is self-orthogonal and has a generator matrix each of whose rows has weight

divisible by four, then every codeword ofC has weight divisible by four.
(ii) If every codeword ofC has weight divisible by four, thenC is self-orthogonal.

Proof: For (i), letxandybe rowsof the generatormatrix. ByTheorem1.4.3(i), wt(x+ y) =
wt(x)+ wt(y)− 2wt(x ∩ y) ≡ 0+ 0− 2wt(x ∩ y) ≡ 0 (mod 4). Now proceed by induc-
tion as every codeword is a sum of rows of the generator matrix. For (ii), letx, y ∈ C. By
Theorem1.4.3(i) and (ii), 2(x · y) ≡ 2wt(x ∩ y) ≡ 2wt(x ∩ y) − wt(x)− wt(y) ≡ −wt(x+
y) ≡ 0 (mod 4). Thusx · y ≡ 0 (mod 2). �

It is natural to ask if Theorem 1.4.8(ii) can be generalized to codes whose codewords
have weights that are divisible by numbers other than four. We say that a codeC (over
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any field) isdivisibleprovided all codewords have weights divisible by an integer� > 1.
The code is said to bedivisible by�; � is calleda divisor of C, and the largest such
divisor is calledthe divisorof C. Thus Theorem 1.4.8(ii) says that binary codes divisible
by � = 4 are self-orthogonal. This is not true when considering binary codes divisible
by � = 2, as the next example illustrates. Binary codes divisible by� = 2 are called
even.

Example 1.4.9The dual of the [n,1] binary repetition codeC of Example 1.2.2 consists
of all the even weight vectors of lengthn. (See also Example 1.3.1.) Ifn > 2, this code is
not self-orthogonal. �

When considering codes overF3 andF4, the divisible codes with divisors three and
two, respectively, are self-orthogonalas the next theorem shows. This theorem includes the
converse of Theorem 1.4.5(v) and (vi). Part (ii) is found in [217].

Theorem 1.4.10LetC be a code overFq, with q = 3 or 4.
(i) When q= 3, every codeword ofC has weight divisible by three if and only ifC is

self-orthogonal.
(ii) When q= 4, every codeword ofC has weight divisible by two if and only ifC is

Hermitian self-orthogonal.

Proof: In (i), if C is self-orthogonal, the codewords have weights divisible by three by
Theorem 1.4.5(v). For the converse letx, y ∈ C. We need to show thatx · y = 0. We can
view the codewordsx andy having the following parameters:

x : � 0 = �= 0
y : 0 � = �= 0

a b c d e

where there area coordinates wherex is nonzero andy is zero,b coordinates wherey is
nonzero andx is zero,c coordinates where both agree and are nonzero,d coordinates when
both disagree and are nonzero, andecoordinates where both are zero. So wt(x+ y) = a +
b + c and wt(x− y) = a + b + d. But x± y ∈ C and hencea + b + c ≡ a + b + d ≡ 0
(mod 3). In particularc ≡ d (mod 3). Thereforex · y = c + 2d ≡ 0 (mod 3), proving (i).
In (ii), if C is Hermitian self-orthogonal, the codewords have even weights by Theo-

rem 1.4.5(vi). For the converse letx ∈ C. If x hasa 0s,b 1s,c ωs, andd ωs, thenb + c + d
is even as wt(x) = b + c + d. However,〈x, x〉 also equalsb + c + d (as an element ofF4).
Therefore〈x, x〉 = 0 forallx ∈ C.Now letx, y ∈ C.Sobothx+ yandωx+ yare inC.Using
Exercise 9 we have 0= 〈x+ y, x+ y〉 = 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉 = 〈x, y〉 +
〈y, x〉. Also 0= 〈ωx+ y, ωx+ y〉 = 〈x, x〉 + ω〈x, y〉 + ω〈y, x〉 + 〈y, y〉 = ω〈x, y〉 +
ω〈y, x〉. Combining these〈x, y〉 must be 0, proving (ii). �

The converse of Theorem 1.4.5(iv) is in general not true. The best that can be said in this
case is contained in the following theorem, whose proof we leave as an exercise.

Theorem 1.4.11Let C be a binary code with a generator matrix each of whose rows has
even weight. Then every codeword ofC has even weight.
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Exercise 18 Prove Theorem 1.4.11. �

Binary codes for which all codewords have weight divisible by four are calleddoubly-
even.2 By Theorem 1.4.8, doubly-even codes are self-orthogonal. A self-orthogonal code
must be even by Theorem 1.4.5(iv); one which is not doubly-even is calledsingly-even.

Exercise 19 Find the minimum weights and weight distributions of the codesH3 in
Example 1.2.3,H⊥

3 , Ĥ3 in Example 1.3.2, the tetracode in Example 1.3.3, and the hexacode
in Example 1.3.4. Which of the binary codes listed are self-orthogonal? Which are doubly-
even? Which are singly-even? �

There is a generalization of the concepts of even and odd weight binary vectors to
vectors over arbitrary fields, which is useful in the study of many types of codes. A vector
x = x1x2 · · · xn in F

n
q is even-likeprovided that

n∑
i =1

xi = 0

and isodd-likeotherwise. A binary vector is even-like if and only if it has even weight; so
the concept of even-like vectors is indeed a generalization of even weight binary vectors.
The even-like vectors in a code form a subcode of a code overFq as did the even weight
vectors in a binary code. Except in the binary case, even-like vectors need not have even
weight. The vectors (1,1,1) in F

3
3 and (1, ω, ω) in F

3
4 are examples. We say that a code is

even-likeif it has only even-like codewords;a code isodd-likeif it is not even-like.

Theorem 1.4.12LetC be an[n, k] code overFq. LetCe be the set of even-like codewords
in C. Then either:
(i) C = Ce, or
(ii) Ce is an[n, k − 1] subcode ofC.

Exercise 20 Prove Theorem 1.4.12. �

There is an elementary relationship between the weight of a codeword and a parity check
matrix for a linear code. This is presented in the following theorem whose proof is left as
an exercise.

Theorem 1.4.13LetC be a linear code with parity check matrix H. Ifc ∈ C, the columns
of H corresponding to the nonzero coordinates ofc are linearly dependent. Conversely,
if a linear dependence relation with nonzero coefficients exists amongw columns of H,
then there is a codeword inC of weightw whose nonzero coordinates correspond to these
columns.

One way to find the minimum weightd of a linear code is to examine all the nonzero
codewords. The following corollary shows how to use the parity check matrix to findd.

2 Some authors reserve the term “doubly-even” for self-dual codes for which all codewords have weight divisible
by four.
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Corollary 1.4.14 A linear code has minimum weight d if and only if its parity check matrix
has a set of d linearly dependent columns but no set of d− 1 linearly dependent columns.

Exercise 21 Prove Theorem 1.4.13 and Corollary 1.4.14. �

The minimum weight is also characterized in the following theorem.

Theorem 1.4.15If C is an[n, k, d] code, then every n− d + 1coordinate position contains
an information set. Furthermore, d is the largest number with this property.

Proof: LetG be a generator matrix forC, and consider any setX of s coordinate positions.
To make the argument easier, we assumeX is the set of the lasts positions. (After we
develop the notion of equivalent codes, the reader will see that this argument is in fact
general.) SupposeX does not contain an information set. LetG = [A | B], where A is
k × (n − s) and B is k × s. Then the columnrank of B, and hence the row rank of B,
is less thank. Hence there exists a nontrivial linear combination of the rows ofB which
equals0, and hence a codewordcwhich is0 in the lasts positions. Since the rows ofG are
linearly independent,c �= 0 and henced ≤ n − s, equivalently,s ≤ n − d. The theorem
now follows. �

Exercise 22 Find the number of information sets for the [7,4] Hamming codeH3

given in Example 1.2.3. Do the same for the extended Hamming codeĤ3 from Example
1.3.2. �

1.5 New codes from old

As we will see throughout this book, many interesting and important codes will arise by
modifying or combining existing codes. We will discuss five ways to do this.

1.5.1 Puncturing codes

Let C be an [n, k, d] code overFq. We canpunctureC by deleting the same coordinatei
in each codeword. The resulting code is still linear, a fact that we leave as an exercise; its
length isn − 1, and we often denote the punctured code byC∗. If G is a generator matrix for
C, then a generator matrix forC∗ is obtained fromG by deleting columni (and omitting a
zero or duplicate row that may occur). What are the dimension and minimumweight ofC∗?
BecauseC containsqk codewords, the only way thatC∗ could contain fewer codewords is if
two codewords ofC agree in all but coordinatei . In that caseC hasminimumdistanced = 1
and a codeword of weight 1 whose nonzero entry is in coordinatei . The minimum distance
decreases by 1 only if a minimum weight codeword ofC has a nonzeroi th coordinate.
Summarizing, we have the following theorem.

Theorem 1.5.1LetC be an[n, k, d] code overFq, and letC∗ be the codeC punctured on
the ith coordinate.
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(i) If d > 1, C∗ is an [n − 1, k, d∗] code where d∗ = d − 1 if C has a minimum weight
codeword with a nonzero i th coordinate and d∗ = d otherwise.

(ii) When d= 1, C∗ is an [n − 1, k,1] code if C has no codeword of weight1 whose
nonzero entry is in coordinate i ; otherwise, if k > 1, C∗ is an [n − 1, k − 1, d∗] code
with d∗ ≥ 1.

Exercise 23 Prove directly from the definition that a punctured linear code is also
linear. �

Example 1.5.2Let C be the [5,2,2] binary code with generator matrix

G =
[
1 1 0 0 0
0 0 1 1 1

]
.

Let C∗
1 andC∗

5 be the codeC punctured on coordinates 1 and 5, respectively. They have
generator matrices

G∗
1 =

[
1 0 0 0
0 1 1 1

]
and G∗

5 =
[
1 1 0 0
0 0 1 1

]
.

SoC∗
1 is a [4,2,1] code, whileC∗

5 is a [4,2,2] code. �

Example 1.5.3LetD be the [4,2,1] binary code with generator matrix

G =
[
1 0 0 0
0 1 1 1

]
.

Let D∗
1 andD∗

4 be the codeD punctured on coordinates 1 and 4, respectively. They have
generator matrices

D∗
1 = [1 1 1] and D∗

4 =
[
1 0 0
0 1 1

]
.

SoD∗
1 is a [3,1,3] code andD∗

4 is a [3,2,1] code. �

Notice that the codeD of Example 1.5.3 is the codeC∗
1 of Example 1.5.2. ObviouslyD∗

4

could have been obtained fromC directly by puncturing on coordinates{1,5}. In general a
codeC can be punctured on the coordinate setT by deleting components indexed by the set
T in all codewords ofC. If T has sizet , the resulting code, which we will often denoteCT ,
is an [n − t, k∗, d∗] code withk∗ ≥ k − t andd∗ ≥ d − t by Theorem 1.5.1 and induction.

1.5.2 Extending codes

We can create longer codes by adding a coordinate. There aremany possible ways to extend
a code but the most common is to choose the extension so that the new code has only
even-like vectors (as defined in Section 1.4). IfC is an [n, k, d] code overFq, define the
extendedcodêC to be the code

Ĉ = {
x1x2 · · · xn+1 ∈ F

n+1
q

∣∣ x1x2 · · · xn ∈ C with x1 + x2 + · · · + xn+1 = 0
}
.
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We leave it as an exercise to show thatĈ is linear. In fact̂C is an [n + 1, k, d̂] code, where
d̂ = d or d + 1. LetG andH be generator and parity check matrices, respectively, forC.
Then a generator matrix̂G for Ĉ can be obtained fromG by adding an extra column toG
so that the sum of the coordinates of each row ofĜ is 0. A parity check matrix for̂C is the
matrix

Ĥ =



1 · · · 1 1

0

H
...
0


 . (1.3)

This construction is also referred to asadding an overall parity check. The [8,4,4] binary
codeĤ3 in Example 1.3.2 obtained from the [7,4,3] Hamming codeH3 by adding an
overall parity check is called theextended Hamming code.

Exercise 24 Prove directly from the definition that an extended linear code is also
linear. �

Exercise 25 Suppose we extend the [n, k] linear codeC over the fieldFq to the codẽC
where

C̃ = {
x1x2 · · · xn+1 ∈ F

n+1
q

∣∣ x1x2 · · · xn ∈ C with x21 + x22 + · · · + x2n+1 = 0
}
.

Under what conditions is̃C linear? �

Exercise 26 Prove that̂H in (1.3) is the parity check matrix for an extended codeĈ, where
C has parity check matrixH . �

If C is an [n, k, d] binary code, then the extended codeĈ contains only even weight
vectors and is an [n + 1, k, d̂] code, wherêd equalsd if d is even and equalsd + 1 if d is
odd. This is consistent with the results obtained by extendingH3. In the nonbinary case,
however, whether or not̂d is d or d + 1 is not so straightforward. For an [n, k, d] code
C overFq, call the minimum weight of the even-like codewords, respectively the odd-like
codewords, theminimum even-like weight, respectively theminimum odd-like weight, of
the code. Denotethe minimum even-like weight byde and the minimum odd-like weight
bydo. Sod = min{de, do}. If de ≤ do, then̂C has minimum weight̂d = de. If do < de, then
d̂ = do + 1.

Example 1.5.4Recall that the tetracodeH3,2 from Example 1.3.3 is a [4,2,3] code over
F3 with generator matrixG and parity check matrixH given by

G =
[
1 0 1 1
0 1 1 −1

]
and H =

[−1 −1 1 0
−1 1 0 1

]
.

The codeword (1,0,1,1) extends to (1,0,1,1,0) and the codeword (0,1,1, −1) extends
to (0,1,1, −1, −1). Henced = de = do = 3 andd̂ = 3. The generator and parity check
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matrices for̂H3,2 are

Ĝ =
[
1 0 1 1 0
0 1 1 −1 −1

]
and Ĥ =


 1 1 1 1 1

−1 −1 1 0 0
−1 1 0 1 0


 .

�

If we extend a code and then puncture the new coordinate, we obtain the original code.
However, performing the operations in the other order will in general result in a different
code.

Example 1.5.5 If we puncture the binary codeC with generator matrix

G =
[
1 1 0 0 1
0 0 1 1 0

]

on its last coordinate and then extend (on the right), the resulting code has generator matrix

G =
[
1 1 0 0 0
0 0 1 1 0

]
.

�

In this example, our last step was to extend a binary code with only even weight vectors.
The extended coordinate was always 0. In general, that is precisely what happens when you
extend a code that has only even-like codewords.

Exercise 27 Do the following.

(a) LetC = H3,2 be the [4,2,3] tetracode overF3 defined in Example 1.3.3 with generator
matrix

G =
[
1 0 1 1
0 1 1 −1

]
.

Give the generator matrix of the code obtained fromC by puncturing on the right-most
coordinate andthen extending on the right. Also determine the minimum weight of the
resulting code.

(b) Let C be a code overFq. Let C1 be the code obtained fromC by puncturing on the
right-most coordinate and then extending this punctured code on the right. Prove that
C = C1 if and only if C is an even-like code.

(c) With C1 defined as in (b), prove that ifC is self-orthogonal and contains the all-one
codeword1, thenC = C1.

(d) With C1 defined as in (b), prove thatC = C1 if and only if the all-one vector1 is
in C⊥. �

1.5.3 Shortening codes

Let C be an [n, k, d] code overFq and letT be any set oft coordinates. Consider the set
C(T) of codewords which are0onT ; this set is a subcode ofC. PuncturingC(T) onT gives
a code overFq of lengthn − t called the codeshortenedonT and denotedCT .
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Example 1.5.6Let C be the [6,3,2] binary code with generator matrix

G =

1 0 0 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1


 .

C⊥ is also a [6,3,2] code with generator matrix

G⊥ =

1 1 1 1 0 0
1 1 1 0 1 0
1 1 1 0 0 1


 .

If the coordinates are labeled1, 2,. . . , 6, letT = {5,6}. Generatormatrices for the shortened
codeCT and punctured codeCT are

GT =
[
1 0 1 0
0 1 1 0

]
and GT =


1 0 0 1
0 1 0 1
0 0 1 1


 .

Shortening and puncturing the dual code gives the codes (C⊥)T and (C⊥)T , which have
generator matrices

(G⊥)T = [1 1 1 1] and (G⊥)T =
[
1 1 1 1
1 1 1 0

]
.

From the generator matricesGT andGT , we find that the duals ofCT andCT have generator
matrices

(GT )
⊥ =

[
1 1 1 0
0 0 0 1

]
and (GT )⊥ = [1 1 1 1].

Notice that these matrices show that (C⊥)T = (CT )⊥ and (C⊥)T = (CT )⊥. �

The conclusions observed in the previous example hold in general.

Theorem 1.5.7LetC be an[n, k, d] code overFq. Let T be a set of t coordinates. Then:
(i) (C⊥)T = (CT )⊥ and(C⊥)T = (CT )⊥, and
(ii) if t < d, thenCT and(C⊥)T have dimensions k and n− t − k, respectively;
(iii) if t = d and T is the set of coordinates where a minimum weight codeword is nonzero,

thenCT and(C⊥)T have dimensions k− 1 and n− d − k + 1, respectively.

Proof: Let c be a codeword ofC⊥ which is0 on T andc∗ the codeword with the coordi-
nates inT removed. Soc∗ ∈ (C⊥)T . If x ∈ C, then 0= x · c= x∗ · c∗, wherex∗ is the
codewordx punctured onT . Thus (C⊥)T ⊆ (CT )⊥. Any vectorc ∈ (CT )⊥ can be extended
to a vector̂c by inserting 0s in the positions ofT . If x ∈ C, puncturex on T to obtainx∗.
As 0= x∗ · c= x · ĉ, c ∈ (C⊥)T . Thus (C⊥)T = (CT )⊥. ReplacingC by C⊥ gives (C⊥)T =
(CT )⊥, completing (i).
Assumet < d. Thenn − d + 1≤ n − t , implying anyn − t coordinates ofC contain

an information set by Theorem 1.4.15. ThereforeCT must bek-dimensional and hence
(C⊥)T = (CT )⊥ has dimensionn − t − k by (i); this proves (ii).
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As in (ii), (iii) is completed if we show thatCT has dimensionk − 1. If S ⊂ T with S
of sized − 1, CS has dimensionk by part (ii). ClearlyCS has minimum distance 1 andCT

is obtained by puncturingCS on the nonzero coordinate of a weight 1 codeword inCS. By
Theorem 1.5.1(ii)CT has dimensionk − 1. �

Exercise 28 LetC be the binary repetition code of lengthn as described in Example 1.2.2.
Describe (C⊥)T and (CT )⊥ for anyT . �

Exercise 29 Let C be the code of length 6 in Example 1.4.4. Give generator matrices for
(C⊥)T and (CT )⊥ whenT = {1,2} andT = {1,3}. �

1.5.4 Direct sums

For i ∈ {1,2} let C i be an [ni , ki , di ] code, both over the same finite fieldFq. Then their
direct sumis the [n1 + n2, k1 + k2,min{d1, d2}] code
C1 ⊕ C2 = {(c1, c2) | c1 ∈ C1,c2 ∈ C2}.
If C i has generator matrixGi and parity check matrixHi , then

G1 ⊕ G2 =
[

G1 O
O G2

]
and H1 ⊕ H2 =

[
H1 O
O H2

]
(1.4)

are a generator matrix and parity check matrix forC1 ⊕ C2.
Exercise 30 Let C i have generator matrixGi and parity check matrixHi for i ∈ {1,2}.
Prove that the generator and parity check matrices forC1 ⊕ C2 are as given in (1.4). �

Exercise 31 Let C be the binary code with generator matrix

G =



1 1 0 0 1 1 0
1 0 1 0 1 0 1
1 0 0 1 1 1 0
1 0 1 0 1 1 0
1 0 0 1 0 1 1


 .

Give another generator matrix forC that shows thatC is a direct sum of two binary
codes. �

Example 1.5.8The [6,3,2] binary codeC of Example 1.4.4 is the direct sumD ⊕ D ⊕ D
of the [2,1,2] codeD = {00,11}. �

Since theminimumdistance of the direct sum of two codes does not exceed theminimum
distance of either of the codes, the direct sum of two codes is generally of little use in
applications and is primarily of theoretical interest.

1.5.5 The (u | u+ v) construction

Two codes of the same length can be combined to form a third code of twice the length
in a way similar to the direct sum construction. LetC i be an [n, ki , di ] code fori ∈ {1,2},



19 1.6 Permutation equivalent codes

both over the same finite fieldFq. The (u | u+ v) constructionproduces the [2n, k1 +
k2,min{2d1, d2}] code
C = {(u,u+ v) | u ∈ C1,v ∈ C2}.
If C i has generator matrixGi and parity check matrixHi , then generator and parity check
matrices forC are[

G1 G1

O G2

]
and

[
H1 O

−H2 H2

]
. (1.5)

Exercise 32 Prove that generator and parity check matrices for the code obtained in the
(u | u+ v) construction from the codesC i are as given in (1.5). �

Example 1.5.9Consider the [8,4,4] binary codeC with generator matrix

G =



1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


 .

ThenC can be produced from the [4,3,2] codeC1 and the [4,1,4] codeC2 with generator
matrices

G1 =

1 0 1 0
0 1 0 1
0 0 1 1


 and G2 = [1 1 1 1],

respectively, usingthe (u | u+ v) construction. Noticethat the codeC1 is also constructed
using the (u | u+ v) construction from the [2,2,1] codeC3 and the [2,1,2] codeC4 with
generator matrices

G3 =
[
1 0
0 1

]
and G4 = [1 1],

respectively. �

Unlike the direct sum construction of the previous section, the (u | u+ v) construction
can produce codes that are important for reasons other than theoretical. For example, the
family of Reed–Muller codes can be constructed in this manner as we see in Section 1.10.
The code in the previous example is one of these codes.

Exercise 33 Prove that the (u | u+ v) construction using [n, ki , di ] codesC i produces a
code of dimensionk = k1 + k2 and minimum weightd = min{2d1, d2}. �

1.6 Permutation equivalent codes

In this section and the next, we ask when two codes are “essentially the same.” We term
this concept “equivalence.” Often we are interested in properties of codes, such as weight
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distribution, which remain unchanged when passing from one code to another that is es-
sentially the same. Here we focus on the simplest form of equivalence, called permutation
equivalence, and generalize this concept in the next section.
One way to view codes as “essentially the same” is to consider them “the same” if they

are isomorphic as vector spaces. However, in that case the concept of weight, which we
will see is crucial to the study and use of codes, is lost: codewords of one weight may be
sent to codewords of a different weight by the isomorphism. A theorem of MacWilliams
[212], which we will examine in Section 7.9, states that a vector space isomorphism of two
binary codes of lengthn that preserves the weight of codewords (that is, send codewords
of one weight to codewords of the same weight) can be extended to an isomorphismof F

n
2

that is a permutation of coordinates. Clearlyany permutation of coordinates that sends one
code to another preserves the weight of codewords, regardless of the field. This leads to the
following natural definition of permutation equivalent codes.
Two linear codesC1 andC2 arepermutation equivalentprovided there is a permutation of

coordinates which sendsC1 to C2. This permutation can be described using apermutation
matrix, which is a squarematrixwith exactly one1 in each rowandcolumnand0selsewhere.
ThusC1 andC2 are permutation equivalent provided there is a permutation matrixP such
thatG1 is a generator matrix ofC1 if and only ifG1P is a generator matrix ofC2. The effect
of applyingP to a generator matrix is to rearrange the columns of the generator matrix.
If P is a permutation sendingC1 to C2, we will write C1P = C2, whereC1P = {y | y =
xP for x ∈ C1}.

Exercise 34 Prove that ifG1 andG2 are generator matrices for a codeC of lengthn and
P is ann × n permutation matrix, thenG1P andG2P are generator matrices forCP. �

Exercise 35 SupposeC1 andC2 are permutation equivalent codes whereC1P = C2 for
some permutation matrixP. Prove that:
(a) C⊥

1 P = C⊥
2 , and

(b) if C1 is self-dual, so isC2. �

Example 1.6.1Let C1, C2, andC3 be binary codes with generator matrices

G1 =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


 , G2 =


1 0 0 0 0 1
0 0 1 1 0 0
0 1 0 0 1 0


 , and

G3 =

1 1 0 0 0 0
1 0 1 0 0 0
1 1 1 1 1 1


 ,

respectively. All three codes have weight distributionA0 = A6 = 1 andA2 = A4 = 3. (See
Example 1.4.4 and Exercise 17.) The permutation switching columns 2 and 6 sendsG1

to G2, showing thatC1 andC2 are permutation equivalent. BothC1 andC2 are self-dual,
consistent with (a) of Exercise 35.C3 is not self-dual. ThereforeC1 andC3 are not permuta-
tion equivalent by part (b) of Exercise 35. �




